Bhoop Singh Gurjar

๐Ÿ“šAll-in-One AI Reference Guide

This webpage offers a curated, category-wise collection of resources in Artificial Intelligenceโ€”including courses, books, playlists, research papers, blogs, code snippets, and repositories .

linkedin logo

Category Category Category
๐Ÿง  LLM Architectures ๐Ÿ”ฅ Machine Learning โœ๏ธ GPUs
๐Ÿ“— RLHF ๐Ÿ”— Chain of Thought ๐Ÿ” AI Math
๐Ÿญ ML ๐Ÿ† Deep Learning ๐Ÿงฉ NLP
๐Ÿ–ผ๏ธ Computer Vision ๐ŸŽฎ Reinforcement Learning ๐ŸŽจ CNNs
๐Ÿ” DPO ๐Ÿ” RNNs ๐Ÿงพ Image Classification
โšก Model Technical Paper โ›ณBooks ๐Ÿ‚LLM Reinforcement Learning
๐ŸƒMixture of expert ๐Ÿฆ’Fine-tuning ๐ŸชฐTensor
๐Ÿงžโ€โ™€๏ธSupervised Learning ๐Ÿฆโ€๐Ÿ”ฅIISC Bangalore ๐Ÿงœโ€โ™‚๏ธAI Agent
๐Ÿซ€Artificial Intelligence ๐Ÿง˜โ€โ™‚๏ธPrompt Engineering ๐Ÿ•ท๏ธStatistical
๐ŸงฌGenerative AI ๐ŸŽกStanford University ๐ŸฆHow To Make LLM
๐ŸPytorch ๐ŸฃKarpathy ๐Ÿ•Š๏ธHow To Make LLM
๐ŸชถLLM Inference ๐ŸฆญLLM-powered phone ๐ŸฆŸDiffusion Model
๐ŸชขBackpropagation ๐Ÿ“€Attention ๐Ÿงšโ€โ™‚๏ธBERT
๐ŸฆดFew-Shot ๐Ÿ‘ฉโ€๐Ÿš€Scaling Laws ๐Ÿฟ๏ธLoRA
๐Ÿฆ‡RAG ๐ŸบAI Youtube Channel ๐ŸซAI Blog
๐Ÿ˜ปEmbedding ๐ŸทNeural Network ๐Ÿฆ„AGI
๐Ÿ˜AI beat Human ๐ŸชVision Transformer ๐ŸฆHistory
๐Ÿฆ“ AI Learning Guide ๐Ÿฆ–Roadmap ๐ŸˆInterview
๐ŸซŽUC Berkeley University ๐ŸฒLLM alignment ๐Ÿ•Reward Modeling
๐ŸซLLM preference ๐ŸซLLM Reasoning ๐ŸƒPositional Encoding
๐ŸธDatabase ๐ŸชผChunking ๐ŸฆจTop AI Papers of the Week
๐ŸฆงTopic Comparison ๐Ÿ’ซLLM from scratch ๐ŸพN8N
๐ŸAgents Protocol ๐ŸคดProgramming Massively Parallel Processors ๐ŸPrinceton University
๐ŸญImportant AI Paper List โ›๏ธImportant AI Blog ย 

More coming soon..

๐Ÿ†Deep Learning

๐Ÿ”™ Back to Categories


๐Ÿ“š Deep Learning Books

# ๐Ÿ“˜ Book Name ๐Ÿ”— Link
1 Deep Learning โ€“ Ian Goodfellow Link
2 Understanding Deep Learning Link
3 Dive into Deep Learning Link
4 The Little Book of Deep Learning Link
5 Grokking Deep Learning Link
6 Practical Deep Learning for Coders โ€“ fastai Link
7 Meta Learning โ€“ How To Learn Deep Learning And Thriveโ€ฆ Link
8 David MacKay โ€“ Information Theory, Inference, and Learning Algorithms Link

๐ŸŽ“ Deep Learning Courses

๐Ÿ”™ Back to Categories

# ๐ŸŽฅ Course Name ๐Ÿ”— Link
1 DeepLearning.AI Link
2 NYU Deep Learning โ€“ Yann LeCun Link
3 The Complete Mathematics of Neural Networks and Deep Learning Link
4 Intro to Deep Learning โ€“ Sebastian Raschka Link
5 Practical Deep Learning for Coders โ€“ fastai Link
6 Full Stack Deep Learning โ€“ 2022 Link
7 David MacKay โ€“ Information Theory, Pattern Recognition, and Neural Networks Link
8 UC Berkeley CS 182: Deep Learning Link
9 MIT โ€“ Introduction to Deep Learning Link
10 CS231n โ€“ Deep Learning for Computer Vision Link
11 CS224d โ€“ Deep Learning for Natural Language Processing Link
12 Machine Learning - Caltech by Yaser Abu-Mostafa (2012-2014) Link
13 Neural networks class by Hugo Larochelle from Universitรฉ de Sherbrooke (2013) Link
14 A.I - MIT by Patrick Henry Winston (2010) Link
15 Vision and learning - computers and brains by Shimon Ullman, Tomaso Poggio, Ethan Meyers @ MIT (2013) Link
16 Deep Learning for Natural Language Processing - Stanford(2017) Link
17 Machine Learning - Oxford (2014-2015) Link
18 Deep Learning - UWaterloo by Prof. Ali Ghodsi at University of Waterloo (2015) Link
19 Statistical Machine Learning - CMU by Prof. Larry Wasserman Link
20 Introduction to Deep Learning by Prof. Bhiksha Raj (2017) Link
21 Deep Learning - UC Berkeley STAT-157 by Alex Smola and Mu Li (2019) Link

๐ŸŽจ CNNs


๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 CNN from Scratch with pure Mathematical Intuition Link
2 Convolutional Neural Network (CNN): A Complete Guide Link
3 CNN Explainer Link
4 ConvNetJS โ€“ Deep Learning in your browser Link
5 Convolutional Neural Networks Explained (CNN Visualized) Link
6 CNNs from different viewpoints Link
7 Image Kernels Link
8 Visualizing what ConvNets learn Link
9 Convolutions in Image Processing Link
10 Understanding โ€œconvolutionโ€ operations in CNN Link
11 Convolutional Neural Networks, Explained Link

๐Ÿ”ฅPytorch

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Zero to Mastery Learn PyTorch for Deep Learning Link
2 Learn PyTorch for deep learning in a day. Literally. Link
3 PyTorch internals - ezyangโ€™s blog Link
4 MiniTorch Link
5 PyTorch is dead. Long live JAX. - Blog Link
6 Inside the Matrix: Visualizing Matrix Multiplication, Attention and Beyond Link

Programming Massively Parallel Processors

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link ย 
1 Programming Massively Parallel Processors(2021) Link ย 
2 Programming Massively Parallel Processors(2019) Link ย 
3 Programming Massively Parallel Processors Book Link ย 
4 CUDA C++ Programming Guide Link ย 
5 How GPU Computing Works GTC 2021 Link
6 GPU Programming: When, Why and How? Link ย 
7 Making Deep Learning Go Brrrr From First Principles Link ย 

Princeton University

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 COS 484: Natural Language Processing Spring 2025 Link

Important AI Blog

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 FlexAttention: The Flexibility of PyTorch with the Performance of FlashAttention Link
2 Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the Worldโ€™s Largest and Most Powerful Generative Language Model link
3 Understanding GPU Memory 1: Visualizing All Allocations over Time link
4 Visualize and understand GPU memory in PyTorch link
5 Data-Parallel Distributed Training of Deep Learning Models link
6 Scaling Language Model Training to a Trillion Parameters Using Megatron link
7 Bringing HPC Techniques to Deep Learning link
8 Ring Attention Explained link
9 Training your large model with DeepSpeed link
10 Visualizing 6D Mesh Parallelism link
11 Building Metaโ€™s GenAI Infrastructure link
12 100,000 H100 Clusters: Power, Network Topology, Ethernet vs InfiniBand, Reliability, Failures, Checkpointing link
13 gpu link
14 Mixture of Experts Explained link
15 Go smol or go home link
16 In the long (context) run link
17 Introducing Async Tensor Parallelism in PyTorch link
18 A guide to PyTorchโ€™s CUDA Caching Allocator link
19 Transformer Math (Part 1) - Counting Model Parameters link
20 Activation Memory: A Deep Dive using PyTorch link
21 Conference Talk 12: Slaying OOMs with PyTorch FSDP and torchao link

๐Ÿง RNNs

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Recurrent Neural Networks Tutorial, Part 1 โ€“ Introduction to RNNs Link
2 Understanding LSTM Networks Link
3 Predict Stock Prices Using RNN: Part 1 Link
4 Recurrent Neural Networks (RNN) - Made With ML Link
5 RNNs and LSTMs - jurafsky, stanford Link
6 The Unreasonable Effectiveness of Recurrent Neural Networks - Karpathy Link
7 NLP from Scratch - PyTorch Link

๐Ÿ“šLLM Architectures

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Attention is all you need (Transformer) Umar Jamil Link
2 Build a Large Language Model (From Scratch) - Sebastian Raschka Link
3 Create a Large Language Model from Scratch with Python - Tutorial Link
4 Intro to Transformers (slides) - giffmana Link
5 [ML 2024] Transformers - Lucas Beyer (giffmana) Link
6 TRANSFORMER EXPLAINER - Polo Club Link
7 The Illustrated GPT-2 (Visualizing Transformer Language Models) Link
8 ATTENTION IS ALL YOU NEED - Implementation Link
9 Linear Relationships in the Transformerโ€™s Positional Encoding Link
10 Implement and Train ViT From Scratch for Image Recognition - PyTorch Link
11 a smol course - huggingface Link
12 HOW I Studied LLMs in Two Weeks: A Comprehensive Roadmap Link
13 HOW LARGE LANGUAGE MODELS work - From zero to ChatGPT Link
14 Building effective agents - Anthropic Link
15 LLM VISUALIZATION Link
16 LLM course - huggingface Link
17 Neural Networks: Zero to Hero Link
18 Stanford CS229 (2023) Link
19 Building an LLM from Scratch (Sebastian Raschka, 2024) Link
20 General Audience Large Language Models (Andrej Karpathy, 2024) Link
21 Foundations of Large Language Modelsโ€ by Tong Xiao and Jingbo Zhu Link
22 Hands-On Large Language Models Link
23 The Illustrated Transformer Link

Karpathy

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Blog Link
2 Neural Networks: Zero to Hero Link
3 CS231n Winter 2016 Link
4 CS231n: Convolutional Neural Networks for Visual Recognition Link
5 EurekaLabsAI Link
6 Github Link

Important AI Paper List

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness Link
2 MIXED PRECISION TRAINING Link
3 FP8-LM: Training FP8 Large Language Models Link
4 Small-scale proxies for large-scale Transformer training instabilities link
5 BREADTH-FIRST PIPELINE PARALLELISM Link
6 DeepSeek-V3 Technical Report Link
7 ZERO BUBBLE PIPELINE PARALLELISM link
8 Mixtral of Experts link
9 Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity link
10 A Survey on Mixture of Experts in Large Language Models Link
11 GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding link
12 An Empirical Model of Large-Batch Training link
13 Reducing Activation Recomputation in Large Transformer Models link
14 Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism link
15 PaLM: Scaling Language Modeling with Pathways link
16 Gemini: A Family of Highly Capable Multimodal Models link
17 The Llama 3 Herd of Models Link
18 ZeRO: Memory Optimizations Toward Training Trillion Parameter Models link
19 PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel link
20 Fire-Flyer AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning link
21 Fast Transformer Decoding: One Write-Head is All You Need link
22 GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints link
23 Domino: Eliminating Communication in LLM Training via Generic Tensor Slicing and Overlapping link
24 Ring Attention with Blockwise Transformers for Near-Infinite Context link
25 STRIPED ATTENTION:FASTER RING ATTENTION FOR CAUSAL TRANSFORMERS link
26 ย  ย 

How To Make LLM

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 How to Scale Your Model by google Link
2 The Ultra-Scale Playbook: Training LLMs on GPU Clusters by Huggingface Link
3 Tiny LLM - LLM Serving in a Week Link

LLM from scratch

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Llama from scratch Link

Agents Protocol

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Model Context Protocol (MCP) Course by HuggingFace Link

Machine Learning

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Machine Learning Specialization (Coursera) Link
2 A Visual Introduction to Machine Learning Link
3 Visual explanations of core machine learning concepts Link
4 Papers & tech blogs by companies sharing their work on data science & machine learning in production. Link
5 CS229: Machine Learning Link
6 Pen and Paper Exercises in Machine Learning Link
7 Interpretable Machine Learning Link
8 math for data science and machine learning Link
9 Machine Learning: Probabilistic Perspective Link
10 XGBOOSTING Link

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Whatโ€™s Really Going On in Machine Learning? Some Minimal Models Link

Computer vision

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Deep Learning for computer vision, by Andrej Karpathy Link
2 Computer Vision & Deep Learning (freeCodeCamp) Link
3 Computer Vision with Prof. Tom Yeh Link
4 Computer vision for dummies Link
5 Training CLIP Model from Scratch for an Fashion Image Retrieval App Link

LLM Inference

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 How to build an LLM inference engine using C++ and CUDA from scratch without libraries Link

N8N

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 The only video you need to Master N8N + AI agents (For complete beginners) Link

AI Learning Guide

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 A survivorโ€™s guide to Artificial Intelligence courses at Stanford (Updated Feb 2020) Link

Vision Transformer

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Vision Transformers Need Registers(2024) Link

Roadmap

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 MLOps guide Link

Interview

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Introduction to Machine Learning Interviews Book Link

AI beat Human

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 O3 beats a master-level GeoGuessr player, even with fake EXIF data Link

LLM Reasoning

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Understanding Reasoning LLMs by Sebastian Raschka Link

Database

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Relational Databases vs Vector Databases Link

Model Technical Paper

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 DeepSeek-Prover-V2 Link
2 GPT-1 โ†’ Improving Language Understanding by Generative Pre-Training(2018) Link
3 GPT-2 โ†’ Language Models are Unsupervised Multitask Learners (2019) Link
4 GPT-3 โ†’ Language Models are Few-Shot Learners(2020) Link
5 ChatGPT :Trained with RLHF โ€“ Reinforcement Learning from Human Feedback (Ouyang et al., 2022) Link
6 GPT-4 โ†’ GPT-4 Technical Report (2023) Link
7 Claude (Anthropic) Constitutional AI: Harmlessness from AI Feedback (2022) Link
8 Gemini: A Family of Highly Capable Multimodal Models (2023) Link
9 Start building with Gemini 2.5 Flash(2025) Link
10 Gemma (Google) Gemma: Open Models for Responsible AI(2024) Link
11 Gemma 3 Technical Report(2025) Link
12 LLaMA Series (Meta AI) LLaMA: Open and Efficient Foundation Language Models(2023) Liink
13 LLaMA 2: Improved training and safety (2023) Link
14 Llama 3:The Llama 3 Herd of Models Link
15 Llama 4:The beginning of a new era of natively multimodal AI innovation Link
16 Mistral AI(France) Mistral 7B: Grouped-query attention (2023) Link
17 Kimi by Moonshot AI (China) Scaling RL with LLMs: Technical Report of Kimi k1.5 (2025) Link
18 DeepSeek(China) DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models Link
19 DeepSeek-V3 Technical Report (2024) Link
20 DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning Link
21 Qwen (China) Qwen Technical Report(2023) Link
22 Qwen2 Technical Report(2024) Link
23 Qwen2.5 Technical Report(2024) Link
24 Qwen2.5-Omni Technical Report Multimodel (2025) Link
25 Qwen3: Think Deeper, Act Faster (2025) Link
26 Phi-4-reasoning Technical Report (2025) Link
27 Phi-4-Mini-Reasoning: Exploring the Limits of Small Reasoning Language Models in Math (2025) Link
28 OpenAIโ€™s GPT-3 Language Model: A Technical Overview (2020) link

OpenAI

LLM-powered phone

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 LLM-powered phone GUI agents in phone automation Link

Diffusion Model

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Diffusion Models from statistical first principles Link
2 implement Diffusion Models from scratch w/ Transformer Link
3 Denoising Diffusion Probabilistic Models (Ho et al., 2020) Link
4 Playlist to learn Diffusion models Link

NLP

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ด ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต Stanford University ๐—ก๐—Ÿ๐—ฃ Link
2 NLP Demystified Link
3 1.5 Stemming, Lemmatization, Stopwords, POS Tagging Link
4 A curated list of resources dedicated to Natural Language Processing (NLP) Link
5 Excited to teach Advanced NLP at CMU this semester Link

Backpropagation

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Learning Representations by Back-Propagating Errors (Rumelhart et al., 1986) Link

Reward Modeling

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Reward Modeling Part 1: Bradley-Terry Model Link
2 An interpretable reward modeling approach Link

LLM preference

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Interpreting Language Model Preferences Through the Lens of Decision Trees Link

Positional Encoding

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Linear Relationships in the Transformerโ€™s Positional Encoding Link
2 Transformer Architecture: The Positional Encoding Link

Attention

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Attention Is All You Need (Vaswani et al., 2017) Link
2 Implement Flash Attention Backend in SGLang - Basics and KV Cache(2025) Link
3 Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention) Link

BERT

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 BERT: Pre-training of Deep Bidirectional Transformers (Devlin et al., 2018) Link

Chunking

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Chunking Strategies for LLM Applications(2023) Link

LLM alignment

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Alignment Guidebook Link

Few-Shot

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Language Models are Few-Shot Learners (Brown et al., 2020) Link

Chain of Thought

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Chain of Thought Prompting (Wei et al., 2022) Link

Scaling Laws

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Scaling Laws for Neural Language Models (Kaplan et al., 2020) Link

AGI

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 AGI is not a milestone Link

History

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 When ChatGPT Broke an Entire Field: An Oral History(2025) Link
2 From Large Language Models to Reasoning Language Models - Three Eras in The Age of Computation. Link

DPO

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Direct Preference Optimization (Rafailov et al., 2023) Link

LoRA

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 LoRA: Low-Rank Adaptation (Hu et al., 2021) Link

Topic Comparison

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Fine-Tuning vs Retrieval Augmented Generation(2023) Link
2 ย  ย 

RAG

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Retrieval-Augmented Generation (Lewis et al., 2020) Link
2 Advanced RAG: Precise Zero-Shot Dense Retrieval with HyDE Link
3 Retrieval Augmented Generation (RAG) from Scratch โ€” Tutorial For Dummies Link
4 Multi-modal RAG Link
5 Beginnerโ€™s Guide to RAG by Tom Yeh Link
6 Retrieval Augmented Generation ,Ragas Link
7 Simplest Method to improve RAG pipeline: Re-Ranking (2023) link

RLHF

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Reinforcement Learning from Human Feedback by Nathan Lambert Link
2 RLHF: Reinforcement Learning from Human Feedback by Chip Huyen Link

Reinforcement Learning

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Berkeley CS 294: Deep Reinforcement Learning Link
2 Spinning Up in Deep Reinforcement Learning - A free deep reinforcement learning course by OpenAI (2019) Link
3 comprehensive overview of Reinforcement Learning methods Link

AI Youtube Channel

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 ๐—ง๐˜„๐—ผ ๐— ๐—ถ๐—ป๐˜‚๐˜๐—ฒ ๐—ฃ๐—ฎ๐—ฝ๐—ฒ๐—ฟ๐˜€ Link
2 ๐——๐—ฒ๐—ฒ๐—ฝ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—”๐—œ Link
3 ๐—Ÿ๐—ฒ๐˜… ๐—™๐—ฟ๐—ถ๐—ฑ๐—บ๐—ฎ๐—ป Link
4 3๐—•๐—น๐˜‚๐—ฒ1๐—•๐—ฟ๐—ผ๐˜„๐—ป Link
5 ๐—”๐—ป๐—ฑ๐—ฟ๐—ฒ๐—ท ๐—ž๐—ฎ๐—ฟ๐—ฝ๐—ฎ๐˜๐—ต๐˜† Link
6 ๐—ฆ๐—ฒ๐—ป๐˜๐—ฑ๐—ฒ๐˜… Link
7 ๐— ๐—ฎ๐˜๐˜ ๐—ช๐—ผ๐—น๐—ณ๐—ฒ Link

AI Blog

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 ๐—ง๐—ผ๐˜„๐—ฎ๐—ฟ๐—ฑ๐˜€๐——๐—ฎ๐˜๐—ฎ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ Link
2 ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ ๐—•๐—น๐—ผ๐—ด Link
3 ๐— ๐—ฎ๐—ฟ๐—ธ๐—ง๐—ฒ๐—ฐ๐—ต๐—ฃ๐—ผ๐˜€๐˜ Link
4 ๐——๐—ฒ๐—ฒ๐—ฝ๐— ๐—ถ๐—ป๐—ฑ ๐—•๐—น๐—ผ๐—ด Link
5 ๐—”๐—ป๐˜๐—ต๐—ฟ๐—ผ๐—ฝ๐—ถ๐—ฐ ๐—•๐—น๐—ผ๐—ด Link
6 ๐—•๐—ฒ๐—ฟ๐—ธ๐—ฒ๐—น๐—ฒ๐˜† ๐—•๐—ฎ๐—ถ๐—ฟ Link
7 ๐—›๐˜‚๐—ด๐—ด๐—ถ๐—ป๐—ด๐—ณ๐—ฎ๐—ฐ๐—ฒ ๐—•๐—น๐—ผ๐—ด Link
8 google Research Link
9 Mehmet Burak Sayฤฑcฤฑ Link

Embedding

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 LLM Embedding Explained Link

AI Math

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Matrix Calulus for Machine Learning and Beyond Link
2 history of mathematics Link

Neural Network

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 LLMs work by 3b1b Link

Books

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Python Crash course Link
2 Cloud Data Science for Dummies Link
3 Cost-Effective Data Pipelines Link
4 DATA ENGINEER With Python Link
5 Data Pipelines Pocket Reference Link
6 Data Internals A Deep Dive into How Distributed data systems work Link
7 Deciphering Data Architectures Link
8 Foundations of Scalable systems Link
9 Fundamentals of Data Engineering_ Plan and Build Robust Data Systems Link
10 Hadoop The Definitive Guide Link
11 Introduction to Machine Learning with Python Link
12 SQL for Data Analysis Link
13 Storytelling with Data_ A Data Visualization Guide for Business Professionals Link
14 Terraform Up and Running Link
15 The Data Engineer Skills & Tools Guide Link
16 The Data Warehouse Toolkit Link
17 Think Stats, 2nd Edition_ Exploratory Data Analysis Link
18 kafka the definitive guide Link
19 practical synthetic data generation balancing privacy and the broad availability of data Link
20 Understanding Deep Learning Link
21 Dive into Deep Learning Link

LLM Reinforcement Learning

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Asynchronous Deep Reinforcement Learning (Google Deepmind 2016) Link
2 Reinforcement Learning from Human (OpenAI 2017) Link
3 Proximal Policy Optimization (OpenAI 2017) Link
4 Fine-Tuning Language Models from Human Preferences (OpenAI 2020) Link
5 Learning to Summarize from Human Feedback (OpenAI 2022) Link
6 Direct Preference Optimization( Stanford University 2023) Link
7 Group Relative Policy Optimization ( DeepSeek 2024) Link
8 Reinforcement learning with verifiable rewards (DeepSeek 2025) Link
9 Reinforcement Learning from Human Feedback (Nathan Lambert) Link

Mixture of expert

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 OUTRAGEOUSLY LARGE NEURAL NETWORKS: THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER Link

UC Berkeley University

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Large Language Model Agents ,(Fall 2024) Link
2 Advanced Large Language Model Agents(spring 2025) Link
3 CS 294-131: Special Topics in Deep Learning Fall, 2016 Link
4 CS 294-131: Special Topics in Deep Learning Spring 2017 Link
5 CS 294-131: Special Topics in Deep Learning Fall 2017 Link
6 CS 294-131: Special Topics in Deep Learning Spring 2018 Link
7 CS 294-131: Trustworthy Deep Learning (Special Topics in Deep Learning) Spring 2019 Link
8 CS294/194-196: Responsible GenAI and Decentralized Intelligence Fall 2023 Link
9 CS294-267/CS194-267 Understanding Large Language Models: Foundations and Safety Spring 24 Link

Fine-tuning

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 finetune Phi-4 for free on Colab Link
2 Understanding Parameter-Efficient Finetuning of Large Language Models: From Prefix Tuning to LLaMA-Adapters Link
3 Practical Tips for Finetuning LLMs Using LoRA (Low-Rank Adaptation) Link
4 PEFT: Parameter-Efficient Fine-Tuning of Billion-Scale Models on Low-Resource Hardware Link

Tensor

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Tensor Product Attention Is All You Need Link

Supervised Learning

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Supervised Learning: A Comprehensive Guide Link

IISC Bangalore

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 started with AI from Basics to Advance as were taught to me at IISC Bangalore as part of Mtech AI Link

AI Agent

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Hugging Face Agents Course Link
2 Agents by Chip Huyen Link
3 Large Language Model Agents MOOC, Fall 2024 Link
4 Advanced Large Language Model Agents MOOC, Spring 2025 Link

Artificial Intelligence

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 lgorithms for AI & ML Link

Prompt Engineering

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 prompt engineering white paper Link

Statistical

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Practical Statistics for data scientists Link
2 The Elements of Statistical Learning Link
3 Naked Statistics: stripping the dread from the data Link
4 How to Lie with Statistics Link
5 All of Statistics Link

Generative AI

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 Microsoft launched the best course on Generative AI Link

Stanford University

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title ๐Ÿ”— Link
1 STATS 202: Data Mining and Analysis Link
2 CS109: Introduction to Probability for Computer Scientists Link
3 CS231N: Convolutional Neural Networks for Visual Recognition Link
4 CS224N: Natural Language Processing with Deep Learning Link
5 CS229: Machine Learning Link
6 CS221: Artificial Intelligence: Principles and Techniques Link
7 CS228: Probabilistic Graphical Models: Principles and Techniques Link
8 CS234: Reinforcement Learning Link
9 CS238: Decision Making under Uncertainty (AA 228) Link
10 CS224W: Machine Learning with Graphs Link
11 CS246: Mining Massive Data Sets Link
12 CS230: Deep Learning Link
13 CS236: Deep Generative Models Link
14 EE263: Introduction to Linear Dynamical Systems Link
15 CS336: Robot Perception and Decision-Making Link

Top AI Papers of the Week

๐Ÿ”™ Back to Categories

# ๐Ÿ“„ Title Week
1 1. Phi-4-Mini-Reasoning 2. Building Production-Ready AI Agents with Scalable Long-Term Memory 3. UniversalRAG 4.DeepSeek-Prover-V2 5. Kimi-Audio 6. MiMo-7B 7.Advances and Challenges in Foundation Agents 8.MAGI 9.A Survey of Efficient LLM Inference Serving 10. LLM for Engineering (April 28 - May 4,2025)